The Crystal and Molecular Structures of some Molecules showing S...O Interaction. III. 3,5-Bis(pivaloylmethylene)-1,2,4-trithiolane

BY I. P. MELLOR AND S. C. NYBURG

Lash Miller Chemical Laboratories, University of Toronto, Toronto 181, Ontario, Canada

(Received 9 July 1970)

Crystals of 3,5-bis(pivaloylmethylene)-1,2,4-trithiolane, $C_{14}H_{20}O_2S_3$, belong to the monoclinic system, a=5.936 (7), b=13.023 (10), c=22.732 (15), $\beta=108.02$ (2)°, space group $P2_1/c$, Z=4 molecules per cell. The structure was solved by Patterson methods. The molecule is approximately symmetric about the mid line and shows S...O distances of 2.509 (5) and 2.517 (5)Å.

The third compound of the series to be studied in connexion with the $S \cdots O$ interactions was 3,5-bis-(pivaloylmethylene)-1,2,4-trithiolane, BPMT, (I).

Crystals of BPMT prepared by Gompper & Töpfl's (1962) method, kindly supplied by Professor P. Yates, had been crystallized from a chloroform-hexane mixture as yellow needles elongated along the x monoclinic axis (y unique).

Preliminary photographic examination showed the crystals to be monoclinic, space group $P2_1/c$. The cell dimensions obtained were subsequently refined by 2θ measurements on a Picker four-circle diffractometer yielding: a=5.936 (7), b=13.023 (10), c=22.732 (15) Å, $\beta=108.02$ (2)°. The calculated unit-cell volume, 1757.3 Å³, and M.W. of 316.5 give, for Z=4 molecules per cell, a calculated density 1.206 g.cm⁻³ compared with a measured 1.22 g.cm⁻³.

For X-ray intensity measurements a portion of crystal was cut from a needle and it then measured approximately $0.15 \times 0.15 \times 0.2$ mm. The linear absorption coefficient for Cu K α is calculated as 37.5 cm⁻¹ and no absorption corrections were applied to the intensity data.

Three-dimensional intensity data were collected by diffractometer in θ -2 θ scan mode using Ni-filtered Cu $K\alpha$ radiation. The procedure adopted in collecting the data was as set out in part II (Mellor & Nyburg, 1971). Intensity measurements were made on 2778 independent reflexions within the range $0 < 2\theta \le 130^\circ$. After data reduction, 530 of these reflexions were classified as unobserved.

Normalized structure amplitudes, E, were generated as in part II, giving 129 reflexions with |E| > 2.0, but with only a third of these in the parity group for which k+l is odd. When the range of |E| was extended down to 1.5 this distribution was less marked but still apparent, implying that some or all of the sulphur atoms lie near the (020) planes.

The structure was solved from the sharpened, originremoved Patterson function using (E^2-1) as coefficients. Sufficient is known of the geometry of this type of molecule to allow one to assume with some confidence that the S(1)S(2)S(3) triangle will have S(1)-S(2) approximately 2·1 Å and S(1)···S(3) approximately 3·0 Å. A set of three atomic positions having this geometry could be postulated which accounted for the highest 22 peaks on the Patterson function. These (sulphur) positions, when used for phasing, yielded all the non-hydrogen atomic positions on an electron density map which was free from false symmetry.

The refinement procedure followed was the same as in part II of this series. After several cycles of refinement with isotropic temperature factors it was noted that the three reflexions with large intensity values 011, 023 and 024 had been insufficiently attenuated owing to an unnoticed malfunction of the diffractometer programmer. These intensity values were excluded from subsequent refinement cycles.

The final cycle of least-squares anisotropic refinement had a conventional R of 0.11 and gave the parameters listed in Table 1. Derived bond lengths and angles together with their standard deviations are given in Fig. 1. The thermal motion of the three t-butyl methyl carbon atoms is very pronounced and highly anisotropic (Fig. 1). The hydrogen atoms attached to atoms C(2) and C(9) were clearly revealed on a Fourier synthesis but those associated with t-butyl methyl groups were poorly defined and of low electron density.

Scattering factors were taken from International Tables for X-ray Crystallography (1962). A list of observed and calculated structure factors is given in Table 2. No hydrogen atoms were included in the F_c values.

Discussion

The structure analysis confirms the 1,2,4-trithiacyclopentane structure assigned by Gompper & Töpfl (1962) and later confirmed by Lynch (1966). In addition it reveals that the molecule has one of the two possible cis conformations with the α,β unsaturated carbonyl *s*-cis (Fig. 1). Least-squares planes for various groups of atoms in BPMT are given in Table 3. Note that four atoms of the central ring, C(1)-S(1)-S(2)-C(8), (plane A) are closely coplanar but S(3) is significantly displaced from this plane by 0.215 Å.

Hordvik (1966) has surveyed the available structural data for molecules containing an X–S^{II}–S^{II}–Y bond and has shown that the S–S bond length is correlated with the dihedral angle between planes X–S–S and S–S–Y. Lone-pair repulsion would be most pronounced at a dihedral angle of 0° and π bonding most favourable at 90°. Hence the shortening of S^{II}–S^{II} observed with increasing dihedral angle. In BPMT close planarity of C(1)–S(1)–S(2)–C(8) makes the dihedral angle in question very small (2°). The S^{II}–S^{II} bond length found, 2·103 Å, fits in very well with Hordvik's curve and implies that the bond is not affected by any possible interaction between the sulphur atoms and the closely adjacent keto oxygen atoms.

The molecule in the crystal is not required crystallographically to have any symmetry although of course the (isolated) molecule would be expected to have a mirror plane. That this is closely so can be seen not only by comparing the bond lengths and angles in Fig. 1 but also by *Best Molecular Fit* (Nyburg, 1969). This best least-squares molecular fit is illustrated in Fig. 2. The four independent $C(sp^2)$ -S bond lengths do not differ significantly from their mean, 1.740 Å, which in turn matches closely that in PDM (paper II) and the C(3)-C(4) and C(10)-C(11) bond lengths 1.525 and 1.529 Å are consistent with those normally accepted for the $C(sp^3)$ -CO bond (Sutton, 1958, 1965). Mean bond lengths for C-CH₃ at 1.532 Å and tetrahedral CH₃-C-CH₃ angles are normal.

As to the S···O interaction, each of the sets of five atoms S(1)-C(1)-C(2)-C(3)-O(1) (plane C) and S(2)-

C(8)-C(9)-C(10)-O(2) (plane D) is quite closely coplanar having maximum deviations from the leastsquares planes of 0.035 and of 0.046 Å for C(3) and C(10) respectively (see Table 3).

Fig. 1. Atomic numbering scheme, bond lengths, angles and e.s.d.'s of BPMT, and perspective view of the molecule seen from about 80 Å showing 50% probability thermal ellipsoids (Johnson, 1965).

 Table 1. Fractional atomic coordinates of non-hydrogen atoms, anisotropic thermal parameters (Å²) and their standard deviations

The temperature factor T is of form exp $\left[-\frac{1}{4}(h^2a^*B_{11}+k^2b^{*2}B_{22}+l^2c^{*2}B_{33}+2hka^*b^*B_{12}+2hla^*c^*B_{13}+2lkb^*c^*B_{23})\right]$.

	10 ⁴ x	104 <i>y</i>	104 <i>z</i>	$10^2 B_{11}$	$10^2 B_{22}$	$10^2 B_{33}$	$10^2 B_{12}$	$10^2 B_{13}$	$10^2 B_{23}$
S(1)	2936 (3)	-142(13)	1446 (8)	263 (6)	516 (8)	544 (9)	-77 (6)	151 (6)	-234(7)
S(2)	1956 (3)	-1087 (13)	657 (7)	277 (7)	460 (8)	480 (8)	-20(6)	150 (6)	-168(7)
S(3)	-2295 (3)	-192 (12)	882 (7)	282 (6)	371 (7)	416 (8)	57 (6)	70(5)	-144(6)
O(1)	3849 (7)	944 (37)	2407 (21)	311 (21)	777 (31)	742 (29)	-57(20)	191 (21)	- 359 (25)
O(2)	562 (8)	-2329 (35)	-225(22)	399 (23)	589 (27)	799 (31)	-52(20)	221(21)	-356(24)
C(1)	160 (8)	203 (40)	1491 (24)	234 (23)	247 (24)	326 (25)	-30(20)	56 (20)	-60(21)
C(2)	- 177 (10)	752 (41)	1950 (25)	377 (28)	261 (26)	333 (28)	-42(22)	61 (23)	-113(23)
C(3)	1879 (11)	1109 (45)	2448 (28)	415 (31)	292 (29)	451 (33)	-43 (25)	119 (26)	-66(26)
C(4)	1512 (11)	1664 (50)	3002 (27)	477 (33)	463 (35)	334 (30)	-23 (28)	118 (26)	-129(27)
C(5)	3902 (13)	1975 (69)	3450 (36)	490 (39)	1194 (64)	665 (46)	-161(42)	30 (35)	- 578 (47)
C(6)	- 125 (15)	2614 (60)	2770 (35)	1032 (58)	600 (46)	718 (49)	373 (43)	211 (44)	-125(39)
C(7)	291 (15)	898 (69)	3328 (36)	839 (53)	1037 (60)	673 (47)	- 332 (46)	405 (42)	-8(46)
C(8)	- 1099 (9)	-1064 (39)	481 (23)	298 (24)	205 (23)	280 (24)	57 (20)	118 (20)	-19(20)
C(9)	-2566 (9)	- 1663 (40)	47 (24)	352 (27)	228 (25)	300 (26)	33 (21)	119 (22)	-66(21)
C(10)	-1583 (10)	-2360 (43)	- 298 (26)	371 (28)	263 (27)	360 (29)	-8(23)	89 (24)	- 59 (23)
C(11)	- 3129 (11)	-3167 (45)	-725 (27)	417 (31)	306 (29)	417 (33)	-1(29)	107 (26)	- 129 (25)
C(12)	- 5363 (14)	-2656 (63)	-1171 (37)	590 (42)	750 (50)	812 (52)	55 (40)	-121 (38)	-216(44)
C (13)	- 3882 (19)	- 3921 (65)	- 301 (40)	1530 (83)	643 (51)	802 (55)	- 568 (55)	135 (54)	122 (45)
C(14)	- 1847 (16)	- 3674 (80)	-1121 (48)	788 (55)	1538 (83)	1493 (79)	-256 (53)	512 (55)	- 1288 (7M)

Planes C and D intersect at 10.1° , S(3) being significantly displaced from each plane as it is from the plane of the central ring. The S...O distances at 2.509 and

2.517 Å are the smallest of those found in this series of three structure analyses.

Intermolecular interatomic distances of less than

 F_o marked 'E' were insufficiently attenuated before counting. They were not included in the refinement.

нц	105 1	0 Ęн	L 1()E 10F 1	1 L 3 - 21	10F 10F 1	+ L + 12	105 105 11 17 •	H L ;;;	10F	10F H	L 1	05 10	10Ęн	L 10	0F 10	н	L :-::	10F5	10Е н -`¦%	L }:₿	106 10	лен Ц	L 10	F 10F	H L	10F,	10Ę -;;;;
	340 9 223 -1 246 -2		-13 -12 -11 -10	57 -5 ² 3 181 174 513 -518 18 -14	-17	154 -173	2 16 2 17 2 16 2 19 2 10	197 149 24 -1 40 92 72 -59 71 -59	1 -24	125	20 -22 -110 93	-11	104 17 144 37	-144 20	2 17	214 2 47	·	-17 -16 -19 -14	255 208 125 27	249 -223 190 -32		197 177 148 119 -	19L 171 121 162		190 -11 275 20 190 14 161 14 272 20		157	-151
• • •	673 -6 309 3 966 3 41 -			110 -21 210 -21 210 -21	-11 -11 -12 -12	41 -36 4 41 -36 4 16 1 194 146	2 21 3 -25 3 -26 3 -23 3 -23	64 -62 15 13 61 -61 111 102 111 -120	-10	119	-120	-21	•1 70 71 74		-25 1 -24 1 -25 1 -27	107 -1 75 131 -1	1	-11	425 42 516			351 97 16	-19		757 74 586 -39 107 -11	2 -10 2 -9 2 -9 2 -9	75 66 33 71	74
	142 1 92 40 229 -1 154 -1	10	-1			175 176 33 50 e 341 -330 68 -33 271 -260	3 -21 3 -20 3 -19 3 -18 3 -17	42 40 190 190 196 -148 192 -110		17-	175	-10	140 57 724	-179	-10 -10 -10	45 - 30 20			482 132 144 422			16 165 157 31	-24 3	10	141 14 29 -4 124 -12 24 -2			-107
• 1 • 1	119 204 197 -	34 35 24 73		520 300 65 673 732 -246 280 286		84 -67 66 68 107 -103 37 24 128 120	3 -16 3 -13 3 -14 3 -13 3 -12	48 -15 171 -154 294 284 160 -152 86 80		181 171 849 977	184 -182 844 -977 204	-10	***	233 147 292 87 47	5 -15 5 -16 5 -13 7 -12	101 -1 100 -1 100 -1			124	-136 * 156 163 * -276	-14	36 63 17 65		15	47 -4 34 -9 14 -7		226 332 121 219	-726 -728 -728 -110 203
	205	34 04	10	124 -152 151 -557 150 -687 135 -126		173 174 75 76 171 162 150 147	-11 -10 	74 79 365 -369 60 75 130 -103 363 339		163 552 805 716 716	-182 -159 -789 -291		1111	-76 -180 -60 -142	1 -10 1 -9 3 -9 3 -7 3 -7	734 -7 156 -1 404 -4 129 -1 164 1	33 67 03 07		112 709 95 181	-196 -177	-14 -13 -17 -17	94 28 39		-21 -20 -19 -18	39 -1 38 -1 87 -1 106 -9	•	157 157 84	-20 152 73
	929 930 431 - 159 132	· · ·	12	10 -107 10 -334 20 - 131 10 -13		57 24 516 341 163 -123		531 510 336 526 140 95 352 500 9 -76	1 -1	314 134 300	-358 -92 -161 552 5-160		110	-134 -114 -114 178	****	42 240 2 13 - 155 1 117 1	27 27		241 134	-381 -60 -230 -146 276		557557	197	-14	10 01 01 10 00 01 13 -1		63 97 101 174	-114
•	41 470 191 50		10	166 -157 108 102 70 -63 16 -26 168 -130	10 11 -11 -11 -11	65 -03 135 122 188 205 53 -16 55 51		175 193 217 -2:7 361 363 313 -247		21	-275		58 42 155 44 72	-130 -77		233 -2 149 -1 122 -1				-1.		110 207 207 117 -	134 • • • 214 • • 35 • 245 • 117 •		26 - 17 61 - 17 75 - 24 75 - 4	• 1 19	35 92 115 196	-37 -36 112 180
1 2	74 93 43 54	47 . 71 . 94 .	-25	· · · ·	-15 -15 -15	** -115 ** 105 ** -52 2* 11		40 -7 279 294 126 120 408 411 238 233		10	-19 77 -55 1 205	-10 -17 -17	34	-98 -33 135 -90		96 -1 194 -1 234 - 276 -2	•• •• •• ••	1 19 1 20 1 21 1 22 2 -24	**		<u>; ;</u>	••	<u> </u>		10 -161 10 -134 151 -134	3 -22 • 3 -21 3 -20 3 -19 3 -18	39 22 102 71 92	-10 -86 91
2 -1	286 157 - 442 - 2 430 -		-22 -21 -20 -19	16 39 • 29 -5 16 -57 245 235 74 235	-10	10 -215. 122 -129 131 -129	10 11 11 12 13	36 -26 226 236 268 -286 31 36 123 -122		1	37 -27 -47	-12	105 37 31 125	120	· · · · · · · · · · · · · · · · · · ·	155 1	14 14 13 14	2 -23 2 -22 2 -21 7 -20 7 -19	142 45 224 45 41	-144 79 -221 -34 19		115 183 31 286 -			44 24 77 35 64 -20 50 13	• 1 -14 3 -15 3 -14 3 -13 3 -13 3 -17	16 71 106 123 322	101 70
	0 83 - 5 24 6 537 6 648 2 716 -	20	-14	173 195 208 213 107 -112 124 121 476 -5'8		301 310 70 37 103 -108 1 190 105		11 -7 45 -35 75 -73 55 -37 48 56	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		• -38 7 -31 1 133 • -66 3 50		234 197 93	-245 146 -92 132	3 14 3 17 3 16 4 -24 4 -23	60 97 50 57	10	2 -18 2 -17 2 -16 2 -15 2 -15	171	177 168 -100 -14	0 5 0 6 7 6	245 - 177 - 176 -			07 -01 07 -01 11 -10 35 21	3 -10	189 281 970 264	140 -244 -316 260
	2 450 - 175 - 4 175 -	10	-12 -11 2 -10 -10	119 328 126 -122 147 -173 157 -119 10 10		86 71 67 27 86 98's 66 22		15 20 66 66 77 67 36 36 67 -83	· · · · · · · · · · · · · · · · · · ·		-110		192 91 182 14	207 95 -196 122	-21		*2 * 15 45 56 18	2 -12	30 42 101	-39	0 10 0 11 0 12 0 13 0 14	154 70 105 221 399		10 11 12 13 -20	19 -1 16 11 19 10 10 121		100 111 17 215	107 -96 -16 207
•	2 272 • 223 - • 33 • 50 • 125 -	372 233 35 29		313 327 750 763	• •	- 2 - 2	14 17 16 15	516 -320 173 -206 36 15 262 -301 313 320	2 -1	1			73 145 13	147		*1 *1	-33 87 44 57		251 268 298 251 251	-283 -259 298 230 -76	0 19 0 16 0 17 0 18 0 19	1155 - 207 - 121 -	120	-10 -17 -16 -15	14 106 12 130 -12		270 111 275 165 108	240 93 279 -158 112
	• 152 • 15 2 14 • 15 2 14 • 15 • 15 • 15 • 15 • 15 • 15 • 15 • 15	157 18 -17 -74 108		114 353 275 -447 273 143 447 -471 g 76 -45 g		391 5C1 . 588 -381 297 -369 1346 1745 632 -1032		30 -71 00 00 121 103 153 159 172 140	· 2 -14 2 -11 2 -11 2 -11 2 -11	10			210 115 74		-11	155 1 248 - 140 1 29	33	2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	199 234 35 35 352	22C -235 -63 15 -500	0 21 0 22 0 23 1 -24	44 148 65 61	-97 9 119 9 90 9	-14 -13 -12 -11 -10	100 -10 221 -20 91 -20 213 -20 277 27		111 219 105 40 127	-126 -204 197 -22 92
	6 219 - 6 431 2 359 0 292 - 8 214 -	236 452 358 286 222		153 126 276 241 110 -121 75 -85	· · · ·	240 -517 98 101 157 -151 267 -269		101 134 417 386 188 -162 40 21 337 -328		1	- 125 5 -289 6 113 5 -57 5 351		717 70 286	-755 •	1111	204	14 31 77		162 201 138	175 · 20 · 20 ·	1 -22 1 -21 1 -20 1 -19 1 -19	15 93 20 41 70	•			5 11 5 12 5 13	177 70	-173
•	43 2 807 - 0 98 2 107 -	-10	2 10 2 10 2 11	231 246 73 -70 92 -89 87 101	0 11 0 12 0 13 0 14 0 15	183 -163 311 317 266 -246 217 210		285 273 268 -272 373 354 68 -48 299 -189			-520 72		21 192 19 90	-39 125 12 34 -41	• •	33 317 46 453	13 43 43 24	2 10	167 107 270 80	160 97 -263 -70	1 -17 1 -16 1 -15 1 -14	16 48 26 197 -	-11 -25 - 5	2770-	103 19 95 9 36 2 161 -15 137 -13	• • -1 • -2 • -1	29 51 109 199	13 24 104 146
	6 672 6 549 3 66 2 200 -	501 585 -72 • 197 • 105	2 13 2 14 2 15 2 16 2 17	238 -244 134 164 34 36 24 -34 42 30	0 10	105 -115 96 -10 233 -221 105 102 205 100		82 -102 256 -258 124 121 91 105 26 28	2 2 2	47	1 -285 7 476 7 45 0 452 5 -366		130	130 -477 -156 -261		11 1	33 -31 -39	2 14 2 15 2 16 2 17 2 10	147 155 275	-141 132 27 717	1 -11	270 - 220 35 486	267 5		19 20 90 -51 82 81 143 131 30 -61	• • -14 • -14 • -14	25 111 192	20 113 131 94
•	23 66 7 111 0 152 -		2 19 2 20 2 21 3 -24	16 -0 76 -65 77 -65 76 -81 25 1	0 22 0 23 0 24 0 25 1 -23	167 137 70 56 16 -22	10	174 -189 59 84 30 -61 16 -11 93 108	2 2 1 1	14		20 21 22 23	148	10 130	10	200	······································	2 20	1,19	-109	1111	554 - 439 544 - 70 259 -	550 526 526 217		22 -21 22 -21 162 -01		37	
	120 - 120 120 120 120 120 120 120 120	103 •		15 -2 • 90 -101 102 105 56 49	-21	211 199 179 199 189 -179		36 21 67 -67 51 -39 12 -3 17 -6		11	-111 2 13 - 100 -70		57		5 -22 5 -21 5 -20 5 -19	144 1 37 47 77	** 11 73	3 -20 3 -19 3 -18 3 -18	***	-89 101 -102 79 -136			140 . 4 300 . 4 424 . -78 . 433 .	-10	74 - 1 74 - 1 74 - 1 74 - 1 71 - 1 71 - 1		42 141 745 137	-191 -353 123
	* *72 - 7 *1 - 7 *1 - 7 *1 -		9 -19 9 -14 9 -17 9 -17 9 -18	-25 78 -25 76 -252 746 -252 127 135	1 -10 1 -10 1 -17 1 -16 1 -15	41 -77 40 44 40 34 127 117 334 341 148	5 -19 5 -19 5 -11	201 105 201 105 33 57 91 -34 80 61		1	-51 -51	1 -20 1 -19 1 -1 1 -17 1 -17	109	-110 62 -256 89 -160	5 -17 5 -16 5 -15 5 -14	221 -1 229 -1 229 -1	62 18 + 62 43 28	-15 -14 -17 -17	217 36 162 117 409	201 -49 165 114 -411		203	227 244 227 744 143	7777	92 101 92 101 121 17 214 -230	•	307 392 20 171	318 178 1 119 -167
	• 20 • 300 • 16 0 161 2 152	311 10 98	3 -14 3 -13 3 -13 3 -13 1 -10	150 -149 333 340 98 -73 6 63 150 -129	-12	130 162 226 -237 178 164 344 328 571 -590	-14 -14 -14 -14	111 -110 132 -129 57 66 126 127 81 -60	3 -22 3 -22 3 -22 3 -21	10	-154 103 -100	1 -14 1 -13 1 -13 1 -13	187	-195 • -14 -147 •	-11	21 21 21 21 21 21 21 21 21 21 21 21 21 2	13		101 101 101 101	-637 -144 196 -316	i 10 i 11 i 12 i 13 i 14	127	······································		, ,		71 101 33 186	
	• 57 • 57	-72 3 0 62	· · · · · · · · · · · · · · · · · · ·	142 170 419 414 348 361 376 370	1111	403 493 40 11 207 -247 444 -449 -	· · · · · · · · · · · · · · · · · · ·	191 195 117 111 24 11 255 -257	3 -18 3 -17 3 -18 3 -19	170	-73 -75		104 962 440 148 296	-112 960 441 -169 -262	1111	115 - 107 -	72 15 07 •	1110	70 296 13 296	311		****	->>		136 14 25 -27 236 -21 393 -39 182 -19	1 1	112	-115 17 49 47
	2 45 3 129 4 162 4 70 -	48 116 -92 •		262 250 . 79 -76 . 16 -6 179 -165		447 -414 41 447 51 347 53 37 4 447	****	76 -59 67 55 250 -236 62 66 16 7	3 -13 3 -12 3 -11 3 -10	441 90 240 71	-17 -17 -101 -166 -726		285 45 216 248 30	-305 202 172 29			28	· · ·	164 236 430 36 277	176 - 216 - -411 -250	1 20	47 19 55 111 123 -	11 • 0 12 • 0	10 11	106 16 14	· · · ·	10 10 20 270	-107
	2 113 - 2 115 - 2 115 -	232	, , , , , , , ,	406 -418 113 -120 114 76 137 -148 604 634		123 -115 • 14 -03 74 25 28 24 177 101	• • •	35 40 158 -155 130 128 170 169 86 110		30	-70 114 324 330		408 371 1146 735	-106 372 355 1140 675		158 180 15 16 93	71 75 27		107 95 96	-122 . 90 . -29 109 109	2 -21 2 -20 2 -19 2 -10 2 -11	52 25 246 - 156 67	-12	12	478 36 417 40 398 34 66 3 57 8	-1		-143
	5 207 - 6 16 6 150 6 65	17	3 10 3 11 3 12	217 242 306 325 325 350 156 -144 100 89	1 10	683 -739 311 -333 • 261 -269 256 -250 375 381 •		1115 -1113 2177 -2447 1177 -1133	· · · · · · · · · · · · · · · · · · ·	10	1 110 172 -360 7 240	1 10	144 402 108 344	145 -401 -114 -334 -59	-19 -19		72 4		78	-73	2 -14 2 -15 2 -14 2 -13 2 -12	140 48 - 81 24	-20	10 20 21	141 -14 176 -14		161	
• -1 • -1	127 - 2 164 - 0 178 - 8 193 - 4 229	71	, 14 , 15 , 14 , 17	44 63 74 -46 71 -39 66 -401 -	1 13	200 206 180 188	-11 -12 -13 -14 -17	18 -67 55 -50 143 153 60 66 39 -58	, ,	330 32 34 29	-338 -322 3 -346 -208 •	1 12 1 13 1 14 1 15 1 16	172 202	137	-11 -12 -11 -10	10 -1		9 17 • -23 • -22 • -21 • -20	17 195 26 190 60	30 151 178 53	-10	129 - 160 26 105 -	20 • 1 57	-22 -22 -21 -20 -10	36 3 36 106 4 97 -7		20 159 102	-173 -10 -156 93 21
	2 148 - 0 44 2 48 4 76	-72		73 64 30 23 30 10 78 70	1 10	47 23 47 -51 124 -136 4 150 -162	-13	10e 115 57 -15 57 52 55 22 75 75	, i , i , i		97 207 -159	110	123	111 •			:	4 -19 4 -19 4 -17 4 -16 4 -15	33 34 18 97 14	-53 . 21 -79 -9 .	1 4 7 7 7	*** ?*?	**	-16 -17 -16 -15 -14	73 -61 100 92 207 19 16 2 767 -28		19	-146 -146 -31
r ;	x • 1 1 • 1 1	•	-11	*7 * * * * * * * * * * * * * * * * * *		77 -60 14 -6 56 -62 110 -114 16 5		87 -62 142 -115 85 67 76 -95 301 310 79 -71	• • •		-71	2 -25	40 33 40 13 242	->> ->> ->> ->> ->> ->> ->> ->> ->> ->>		105 265 -2 11 100 -		-14 -12 -12 -11	24370 742	17 11 15 157 -17	****	403 396 227 131 259		-12 -11 -10 -9	430 -14 280 -30 150 12		24 41 47 81	-96 30 91
****	5 412 - 6 139 - 7 244 -	130 130	13 13 13	160 -152 371 369 331 -336 256 272 61 -50	2 -19 2 -19 2 -18 2 -17 2 -18	71 40 4 251 263 205 211 229 206		40 30 201 -212 125 120 57 -48	• -2		1 80 1 107 1 102	2 -10	17		<u>: (</u> 	,	<u></u>		15 20 51	-14 -14 -15 -17	· · ·	100 143 - 47 244 -			151 12 302 50 369 -37 131 13 60 -6	<u></u>		1
0 0 0	144 - 155 - 1 120 - 2 948 -	101	-10	61 62 208 201 1 320 513 1 82 -83 230 174		212 -251 62 -27 65 -226 136 160		111 109 101 105 10 -7 12 -3		15	-177 1 -136 3 -62 2 -73 0 191	2 -13	71	-1.5	0 1 2 3 0 0 0	270 2 63 189 -1 50 101 -1	78 78 99 99		81 51 473 210 39	78 • 52 490 207 -28	2 11 2 12 2 13 2 14 2 15	139 - 295 - 133 -	-12 • 1 196 • 1 195 • 1	-1	156 -13 65 -8 511 -20 220 -18 587 -60	0 1	630 230 232	444 234 225
000000000000000000000000000000000000000	100 5 171 6 69 7 146 -	47 23 180 43		474 -488 105 74 103 -101 74 -89 427 424		122 -114	; ;	• 3 7~6 737 606 767			-29 0 101 -294 1 194	2 -10		193 -246 101 -99 178	0 0 10 0 10	307 -1 733 -1 246 -1 239 -1 131 -1	11		181 305 89 121 16	-517 74 -115 -1	2 14	148 40 119 171 66	115 70 127 172	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	174 10 175 10 123 10 149 52 80 -6 191 18	0	47 161 125 186 175	-112 -110 -183 -148
	74 6 123 1 225 2 69 1 43	-15		214 220 111 -135 246 -251 215 201		38 32 364 330 493 447 333 -332		1152 -1266 920 1066 832 -626 33 88 741 242		12	2 147 5 -15 5 110 0 -259 0 -174		234 243 141 157 398	-130	0000	140 -	71 12 02 13		105	-12 -12 -43	-22 -22 -21 -21 -20	30 25 25 25 25 25 25 25 25 25 25 25 25 25		10	226 -21 110 -30 51 40 316 29		91 184 16 67	-100
	5 .38 5 .38 5 147 -	41 -19 -40 134		173 145 51 72 117 100 69 -89		771 -736 351 -367 220 177 632 -617	10 10 11	15# 15# 70 -60 261 -273 31 68 67 -68			0 -407 547 4 -174 2 -165		370	-367 370 -113	0 17 0 18 0 19 0 20 0 21	425 - 116 - 55 115	98 06 79	-71	81 176 113 46 18	-14		14 53 49 717		14	114 -11 24 -14 31 -14		113 187 87 40 101	103
	2 21 2 29 1 252 0 121 -	-11	11	91 85 43 -24 47 75 16 -13 109 -94		41 -43 50 98 330 -358 13 15 240 247	0 14	199 189 16 -76 33 31 81 69 48# -450	•	20	184 3 -424 1 -45 10 -198 8 -67		263 112 96 52	-258 • -72 -73 -73	-21	139 139 13		5 -18 5 -17 5 -16 5 -15	150	14 -33 150 -274	-11 -10	105 283 556 -		-22	24 97 71 97	• • • • •	156 61 51 75 46	-115
	7 127		3 - 33	50 -30 * 10 -20			1	11 -12 110 -14			- 10	; !;	200	-1.00	1 -31	36		; -13	12	-125	; :;	140 -	100	-1.	144 14	: : :;;	15	-20

н	L 10	F 10F	нι	10F	10Fe	нι	10F	10Ę	нι	10E	10F. H	ιL	10 E	10F,	нι	105	10F	н	L 1	0F, 1	OF	Hι	10E.	10E.	нι	10E	10E	нι	10F	10F	нL	10E	105
			• • • •	1			218 47 55	-76	2 -10	14	-07 108 0	: -11	40 14	-11	• •	:			13	2	-112			-101	1 -11		-127	1 :	24 40	10.2	13	**	-15
	12 2	-21	• 2 -17 2 -18 2 -18	1	-111		112	100	2 -15	200	-198		- Di	-110	į					122	-149	1		-113		1	-191			-10		134	-142
• 1		e 93 3 -7		142	187	;	**	-146	: 1	22			100	202	Ì			ġ.	1	54 74	38 -70	•	13	17:		33	금· ::::•	1 -1	28			152	111
i		3 -123	-10	iii	-111 -	; ;	72		•	212 212 192	232		125	146	٠į					37 30 152	38		-	3.		103	-29	11	**	-??.	1 -1	41 10	***
		-242		322	-40:		•••	7		140	134		3	;;		-14 1	13 - 1 44 - 1 30 - 1	•••••••••••••••••••••••••••••••••••••••					113	-101		14	-117		197	210 +		1	102
i	1 1	2 168	•	103	-192	•	22	-14	; -;	272	-201 -220 •		50	-;;		-12	;; ·		1 11	192	-186 -150 13		150	-165		2	-24		17	-11		34	
1		-202 5 201 7 193		177	-147		37	-12	• • • •	275	-285	3 -12	214					ij.		109				48 24 e -36 .	1	41 13 120	175	2 -13 2 -12 2 -11	30	-#·			195 -75
i				63 120	-122	3 1		-2.0	. ; ;	150	162	13	100	-13	• :		14 - 1 34 - 1 34 - 1	17 .		13	-11	<u> </u>	• • • •		1-11	12	-22		1	-11	<u>.</u>	• 19	
i		-247	;;;	277	250		174	145		174	17	13	132	-135	• :			19		1	-87	;	174	174			-	13	101	113 -13 100	6 C	ï	-122
·	14		:;;;	120	-116	0 1	127 44	-122	1 1		-100	į		-49 -49	: :				-10	. ;;	73 -40 -57	•				11	-10 51 17	1 -1	176	-30 •	1 1	87 34	-10
:		-10	• • • •	111	-139	•	130	-143	• • • - 10	13	-		1	-30 -30		ļ,	**			174	-120	•	109	121			-100		1	-1		20 72 12	-73
			: ::	15	-197 23 -10	• • • •	12	-20	• ; -1;	100	-22		• 10 412	343	. 1	-11	11 11	53 • 176 •		107	198 14 332				1 1	15		; ;	22	-152			
. 1			-11	146	136		192	-103	•	14			107	276	. !	1	-			61 61	-17	•	102	-8 04 108		175	164	-12		-10			
• {		-127	: : ::	1	-14	1-1		-252	- 1-	34.57	-34	: ;	12	-707	:]	-	13 49	**		114	-124		17	177	-10	70 40 169	-15 -15 177						
: ;	10			242	-104		247	250		136	113	: ;;	13	-199 -294			1		::	97 83 83		1-1		-29 201 -	1	130		13	78 29 76				
•	3		. 3	155	-174	•	21	8C 82 2121	•	211	-21	0 12	12	78		1	79	.	2 10	133	1	: 13		-104 33 20			-154	, ,	12	1			
. ;	;;;			1	114	•	371	-12	. ! !	141	141	0 10	107		0000	1	12.		÷.ÿ	15	-17	•		ļ.	: -;	47	<u>-;;</u>	<u>, ,</u>	52	-50			
.;			• • • •	1	-17			-206			-1	1 -1	119	-121	•	3	1			1111	102	•		-17	• 1	• 13		• •	171	-187			
1	;;	57 -52 20 129 55 262	• • •					-		55	100		10	161	• •	ii i	20	÷.		100	-33	:		-24 45 50	0 2	26	15		108 68 36	-128 72 -64			
.;	1		•	1		i	110	-236	• ; ;;	2	-67 26 -87		117	-120	• :	15	57 06 73	101		22	103		130	140		50 872	28 100 -62	::	;; ••	-15			
• ;	11 1	117 12 45 14 -72		112	123			**		•1 77	-11	1 -10	139	171	÷į	-	1	į.	13	149	-47	•	100	-144	0 10		-34	1 -10	90 110	-23 191			
•	10 1	41 -91 76 -187	-17 -11 -10	203	-237		107	-123	: : :		-,		214 64 52	-44	• 1	-11	24 01	n		41 43	-12	•	14 91	15	0 19 1 -19 1 -12	12	-17		122	-36			
:;		,	:;;	32 147	117	2 -2 2 -2 2 -1	1	-135		25 70 12	10.	1 -2	19	110	. i	-11				251	-24	•		-63	1-11	138	-167 •		20				

1

r

Table 2 (cont.)

Table 3. Some least-squares planes

Distances with asterisks refer to atoms excluded from the least-squares plane analysis. All planes of form Px + Qy + Rz =S with x, y, z in fractional coordinates.

	Plane A	Plane B	Plane C	Plane D
	⊿(Å)	⊿(Å)	⊿(Å)	⊿(Å)
S(1)	-0.0145	0.3170*	-0.0218	-0.2672*
S(2)	0.0145	0.3611*	-0.1474*	-0.0268
S(3)	0.2145*	0.0	0.1180*	0.1395*
O(1)	-0·1438*		0.0329	
O(2)	-0·1729*			0.0417
C(1)	0.0111	0.0	0.0206	• • • • •
C(2)	-0.0938*		0.0031	
C(3)	-0.2204*		-0.0349	
C(8)	-0.0112	0.0		0.0238
C(9)	0.1661*			0.0070
C(10)	-0.3098*			-0.0457
P .	-0.9624	-2.1053	-0.9892	-0.7946
Q	- 10.299	-9.6764	-10.834	- 9.5099
Ř	13.898	14.763	12.613	15.424
S	1.8589	1.9710	1.6655	1.8649

4.0 Å are listed in Table 4, and the packing illustrated in Fig. 3. None deserve special comment except that the van der Waals radius of sulphur appears to be about 1•72 Å.

There are now sufficient crystal structure analyses known of molecules showing $S \cdots X$ (X=S,O,Se,N) interactions for some generalizations to be possible.

The interaction always occurs across the open ends of a five-membered ring of atoms $S \cdots C \cdots C \cdots C \cdots X$ in which the carbon atoms are sp^2 hybridized. Clearly for efficient π orbital overlap in this ring it needs to be planar. It can only be assumed then that, for some

Table 4. Interatomic distances less than 4.0 Å

Atom B is generated from the coordinates of Table 1 using the unit-cell translation shown together with the following symmetry operations: 2 v 1 1 ١,

2 –	$x_{1}^{x_{1}}, y_{2}^{y_{1}}, y_{2}^{z_{2}}, y_{3}^{z_{3}}, y_{3$	$4 - x, \frac{1}{2} + y$	$v_{1,\frac{1}{2}+z}$
$\begin{array}{c} \text{Atom } A \\ \text{S(1)} \\ \text{S(2)} \\ \text{S(2)} \\ \text{S(3)} \\ \text{S(2)} \\ \text{S(3)} \\ \text{O(1)} \\ \text{O(1)} \\ \text{O(1)} \\ \text{O(1)} \\ \text{O(1)} \\ \text{O(2)} \\ \text{O(2)} \\ \text{O(2)} \\ \text{C(1)} \\ \text{C(6)} \\ \text{C(7)} \\ \text{C(8)} \end{array}$	Atom B S(3) ₁ S(3) ₂ O(2) ₂ C(5) ₄ C(9) ₁ C(9) ₂ C(9) ₂ C(2) ₁ C(7) ₁ C(7) ₁ C(12) ₂ C(12) ₁ C(12) ₂ C(12) ₂ C(14) ₃ C(8) ₂	Unit cell translation of atom B (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, -1, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0	Distance 3.45 Å 3.93 3.98 3.93 3.88 3.67 3.74 3.98 3.98 3.98 3.95 3.99 3.75 3.90 3.93 3.72 3.94 3.77 3.79 3.54 3.99
	<u></u>		1
		0 1 2	_」 3Å
F	ig. 2. Best leas	st-squares molecular fi	t.

Fig. 3. Molecular packing viewed along [100].

reason, there is insufficient repulsion between S and X to prevent the molecule being planar and hence achieving maximum π -orbital overlap. This has led to the view that S and X are actually chemically bonded albeit weakly.

It is in any case clear that the bonds $S \cdots S$ are weak or, more precisely, have a flat potential energy curve. The observed $S \cdots X$ distances show quite a wide variation from molecule to molecule (see Table 1, part I). Inspection of the molecular geometries shows immediately however that this is due to variations in the bond angles in the rings and not in the other bond lengths, which are remarkably similar from molecule to molecule. This of course is due to the well-known fact that interbond angles are readily changed by 5° or more because of inter- or intramolecular forces whereas the lengths of comparable bonds vary by as little as 0.01 Å. Some calculations of intermolecular crystal forces on the sulphur atoms of certain symmetric thiathiophthens showing different $S \cdots S$ lengths have been carried out (Nyburg, 1970) but the calculations do not correctly predict the observed differences in $S \cdots S$ lengths in every case.

Generous support from the National Research Council of Canada is gratefully acknowledged.

References

- GOMPPER, R. & TÖPFL, W. (1962). Chem. Ber. 95, 2871.
- HORDVIK, A. (1966). Acta Chem. Scand. 20, 1885.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). Report ORNL-3794, Revised. Oak Ridge National Laboratory, Tennessee.
- JOHNSTONE, R. A. W. & WARD, S. D. (1969). *Theoret. Chim.* Acta, 14, 420.
- LYNCH, T. R. (1966). Ph.D. Thesis, Univ. of Toronto.
- MELLOR, I. P. & NYBURG, S. C. (1971). Acta Cryst. B27, 1954.
- NYBURG, S. C. (1969). Best Molecular Fit. Local Program, unpublished.
- NYBURG, S. C. (1970). Trans. Amer. Cryst. Assoc. 6, 95.
- SUTTON, L. E. (1958). *Tables of Interatomic Distances and Configuration in Molecules and Ions*. Special Publication No. 11. London: The Chemical Society.
- SUTTON, L. E. (1965). *Tables of Interatomic Distances and Configurations in Molecules and Ions*. Special Publication No. 18. London: The Chemical Society.